Summary: Electrostatics in Free Space

A brief summary of the basic equations for electrostatics in empty space

Dielectric constant: \epsilon_0=8.854*10^{-12} ~C^2N^{-1}m^{-2}

Electron charge: e=1.6*10^{-19}~C

Coulomb’s law of attraction: \vec{F}=\frac{1}{4\pi \epsilon_0}\frac{q_1q_2}{r_{12}^2}\hat{r}=k_0\frac{q_1q_2}{r_{12}^2}\hat{r}= k_0\frac{q_1q_2}{r_{12}^3}\vec{r}

Electrostatic field: \vec{E} = \frac{1}{q}\vec{F}

Flux of the electrostatic field: \Phi_S(\vec{E}) = \int \vec{E}\cdot \hat{n}dS=\int_S \vec{E}\cdot\vec{dS}

Gauss’ theorem:  \Phi_S(\vec{E}) = \int \vec{E}_0\cdot \hat{n}dS=\frac{Q_{int}}{\epsilon_0}=\frac{1}{\epsilon_0}\int_{V(S)} \rho dV

Divergence theorem: \int_S\vec{A}\cdot d\vec{S}=\int_{V(S)}\vec{\nabla}\cdot\vec{A}dV

Maxwell’s first equation: \vec{\nabla}\cdot \vec{E}=\frac{\rho}{\epsilon_0}

The electrostatic field is conservative: \oint\vec{E}\cdot d\vec{l}=0

Electrostatic potential: \int_{A}^{B} \vec{E}\cdot d\vec{l}= V(A)-V(B) and

Differential relationship between electric field and potential \vec{E}=-\vec{\nabla} V

Gradient of a scalar function: \vec{\nabla}f(x,y,z)= \hat{\imath}\partial_x f + \hat{\jmath}\partial_y f + \hat{k}\partial_z f

Electric potential due to a point charge: V(x,y,z) = \frac{1}{4\pi\epsilon_0}\frac{q}{r}+C

Electric potential due to a charge distribution (superposition principle): V(x,y,z) = \frac{1}{4\pi\epsilon_0}\int_V\rho dV

Curl of the electrostatic field in free space: \vec{\nabla}\times\vec{E}=0

Energy density of the electrostatic field: u = \frac{1}{2}\epsilon_0 |E|^{2}

Energy of the electrostatic field: U = \int_{V} u dV = \frac{1}{2}\epsilon_{0}\int_V|E|^2 dV

Electric dipole moment: \vec{p}=q\vec{\delta}=\int_V\rho(r)dV

Potential due to an electric dipole: U = -\vec{E}\cdot\vec{p}

Torque of an electric dipole: \tau = -\vec{E}\wedge\vec{p}

 

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s