A brief summary of the basic equations for electrostatics in empty space Dielectric constant: $latex \epsilon_0=8.854*10^{-12} ~C^2N^{-1}m^{-2}$ Electron charge: $latex e=1.6*10^{-19}~C $ Coulomb's law of attraction: $latex \vec{F}=\frac{1}{4\pi \epsilon_0}\frac{q_1q_2}{r_{12}^2}\hat{r}=k_0\frac{q_1q_2}{r_{12}^2}\hat{r}= k_0\frac{q_1q_2}{r_{12}^3}\vec{r}$ Electrostatic field: $latex \vec{E} = \frac{1}{q}\vec{F} $ Flux of the electrostatic field: $latex \Phi_S(\vec{E}) = \int \vec{E}\cdot \hat{n}dS=\int_S \vec{E}\cdot\vec{dS} $ Gauss' theorem: $latex \Phi_S(\vec{E}) = \int … Continue reading Summary: Electrostatics in Free Space

# Summary: Electrostatics in Free Space

Advertisements